Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
Remote Sensing ; 14(16):3927, 2022.
Article in English | ProQuest Central | ID: covidwho-2024036

ABSTRACT

Airport emissions have received increased attention because of their impact on atmospheric chemical processes, the microphysical properties of aerosols, and human health. At present, the assessment methods for airport pollution emission mainly involve the use of the aircraft emission database established by the International Civil Aviation Organization, but the emission behavior of an engine installed on an aircraft may differ from that of an engine operated in a testbed. In this study, we describe the development of a long-path differential optical absorption spectroscopy (LP-DOAS) instrument for measuring aircraft emissions at an airport. From 15 October to 23 October 2019, a measurement campaign using the LP-DOAS instrument was conducted at Hefei Xinqiao International Airport to investigate the regional concentrations of various trace gases in the airport’s northern area and the variation characteristics of the gas concentrations during an aircraft’s taxiing and take-off phases. The measured light path of the LP-DOAS passed through the aircraft taxiway and the take-off runway concurrently. The aircraft’s take-off produced the maximum peak in NO2 average concentrations of approximately 25 ppbV and SO2 average concentrations of approximately 8 ppbV in measured area. Owing to the airport’s open space, the pollution concentrations decreased rapidly, the overall levels of NO2 and SO2 concentrations in the airport area were very low, and the maximum hourly average NO2 and SO2 concentrations during the observation period were better than the Class 1 ambient air quality standards in China. Additionally, we discovered that the NO2 and SO2 emissions from the Boeing 737–800 aircraft monitored in this experiment were weakly and positively related to the age of the aircraft. This measurement established the security, feasibility, fast and non-contact of the developed LP-DOAS instrument for monitoring airport regional concentrations as well as NO2 and SO2 aircraft emissions during routine airport operations without interfering with the normal operation of the airport.

2.
Sustainability ; 14(15):9692, 2022.
Article in English | ProQuest Central | ID: covidwho-1994198

ABSTRACT

The increasing attention of opinion towards climate change has prompted public authorities to provide plans for the containment of emissions to reduce the environmental impact of human activities. The transport sector is one of the main ones responsible for greenhouse emissions and is under investigation to counter its burdens. Therefore, it is essential to identify a strategy that allows for reducing the environmental impact produced by aircraft on the landing and take-off cycle and its operating costs. In this study, four different taxiing strategies are implemented in an existing Italian airport. The results show advantageous scenarios through single-engine taxiing, reduced taxi time through improved surface traffic management, and onboard systems. On the other hand, operating towing solutions with internal combustion cause excessive production of pollutants, especially HC, CO, NOX, and particulate matter. Finally, towing with an electrically powered external vehicle provides good results for pollutants and the maximum reduction in fuel consumption, but it implies externalities on taxiing time. Compared to the current conditions, the best solutions ensure significant reductions in pollutants throughout the landing and take-off cycle (−3.2% for NOx and −44.2% for HC) and economic savings (−13.4% of fuel consumption).

3.
IEEE Access ; 2022.
Article in English | Scopus | ID: covidwho-1779060

ABSTRACT

We propose a new concept and architectural design for a double hybrid tailsitter unmanned aerial vehicle with vertical takeoff and landing capability. Basically, it consists of a modified flying wing with a single combustion powertrain set and a multirotor with 2 powertrain sets with electric motors. To this end, we have designed, built, and tested a prototype that spends less energy on vertical taking off and landing and also on horizontal flight, for maximizing flight endurance and distance.With electric propellers fixed at the leading wing edge, the tailsitter has two standard surfaces for elevation control and two vertical stabilizers that are used to give the necessary direction on vertical takeoff and landing. Experiments and results show the versatility of our hybrid tailsitter for operations in a restricted field. We performed several tests starting with the aircraft on the ground in vertical positioning. These tests include executing vertical takeoffs and landing, transitions from vertical to horizontal flight modes and transitions back from horizontal to vertical flight modes, and hovering, which were carried out successfully. Transition fourth and back from combustion to multirotor modes are inherent to some of those flight mode transitions, which have been performed smoothly.We also performed tests (in bench) to estimate the flight endurance. Final autonomous flight adjustments were not performed due to the Covid-19 pandemic caused by SARS-CoV-2. To this end the proposed and currently built prototype has proven to be functional as an effective hybrid UAV system. Author

4.
Applied Sciences ; 12(3):1183, 2022.
Article in English | ProQuest Central | ID: covidwho-1731912

ABSTRACT

Advanced air mobility (AAM) is a broad concept enabling consumers access to on-demand air mobility, cargo and package delivery, healthcare applications, and emergency services through an integrated and connected multimodal transportation network. While a number of technical and social concerns have been raised about AAM, early use cases for emergency response and aeromedical transport may be key to demonstrating the concept and building public acceptance. Using a five-step multi-method approach consisting of preliminary scoping, modeling performance metrics, developing baseline assumptions, analyzing scenarios, and applying a Monte Carlo sensitivity analysis, this study examines the potential operational and market viability of the air ambulance market using a variety of aircraft and propulsion types. The analysis concludes that electric vertical take-off and land (eVTOL) aircraft could confront a number of operational and economic challenges for aeromedical applications compared to hybrid vertical take-off and land (VTOL) aircraft and rotorcraft. The study finds that technological improvements such as reduced charge times, increased operational range, and battery swapping could make the eVTOL aircraft more reliable and cost-effective for aeromedical transport.

5.
Sustainability ; 14(4):2354, 2022.
Article in English | ProQuest Central | ID: covidwho-1715698

ABSTRACT

As the global interest in renewable energy generation continues, the need to develop new and innovative solutions is being explored every day throughout the world by researchers and innovators. Hybrid renewable energy innovations are gaining progressive interest not only because of the threat of climate change but also due to the technological advancements seen in renewables. Ocean waves have immense potential as a renewable energy source, and related technologies have advanced continuously over the past few decades. In response, this paper extensively studies wave energy converters (WECs) based on the power take-off (PTO) technique, and presents a novel hybrid wave-plus-photon energy (HWPE) harvester called Wavevoltaics, based on wave and solar energy capture systems for coastal communities’ power needs, in line with decarbonization measures. The HWPE harvester uses a simple rack-and-pinion mechanism in combination with solar cell technology to convert the wave energy into usable electrical energy in a water column structural design. This novel HWPE device can be used to provide power for lighting and gadgets for coastal communities that rely heavily on fossil fuels for their lighting and electrical needs. Later in the paper, the challenges faced in hybrid wave energy development are presented.

SELECTION OF CITATIONS
SEARCH DETAIL